Optimal decay rates and global existence for a semilinear Timoshenko system with two damping effects
نویسندگان
چکیده
In this paper, we study a semilinear Timoshenko system having two damping effects. The observation that two damping effects might lead to smaller decay rates for solutions in comparison to one damping effect is rigorously proved here in providing optimality results. Moreover the global well-posedness for small data in a low regularity class is presented for a larger class of nonlinearities than previously known and proved by a simpler approach.
منابع مشابه
Existence and Boundary Stabilization of the Semilinear Mindlin-Timoshenko System
We consider dynamics of the one-dimensional Mindlin-Timoshenko model for beams with a nonlinear external forces and a boundary damping mechanism. We investigate existence and uniqueness of strong and weak solution. We also study the boundary stabilization of the solution, i.e., we prove that the energy of every solution decays exponentially as t → ∞. AMS Subject Classifications. 35L70, 35B40, 7...
متن کاملWell-posedness and stability of a semilinear Mindlin-Timoshenko plate model
"Well-posedness and stability of a semilinear Mindlin-Timoshenko plate model" I will discuss well-posedness and long-time behavior of Mindlin-Timoshenko plate equations that describe vibrations of thin plates. This system of partial differential equations was derived by R. Mindlin in 1951 (though E. Reissner also considered an analogous model earlier in 1945). It can be regarded as a generaliza...
متن کاملExistence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions
This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.
متن کاملGlobal Existence and Exponential Decay for a Dynamic Contact Problem of Thermoelastic Timoshenko Beam with Second Sound
In this paper, we study the global existence and exponential decay for a dynamic contact problem between a Timoshenko beam with second sound and two rigid obstacles, of which the heat flux is given by Cattaneo’s law instead of the usual Fourier’s law. The main difficulties arise from the irregular boundary terms, from the low regularity of the weak solution and from the weaker dissipative effec...
متن کاملVibration Attenuation Timoshenko Beam Based on Optimal Placement Sensors/Actuators PZT Patches with LQR-MOPSO
The main objective of this study is to reduce optimal vibration suppression of Timoshenko beam under non-periodic step and impulse inputs. Cantilever beam was modeled by Timoshenko theory and finite element numerical method. Stiffness (K), mass (M), and damping (C) matrices are extracted. Then, in order to control structure vibration, piezoelectric patches were used due to simultaneous dual beh...
متن کامل